

Process Hazard Analysis Template

Complete

Score	17 / 18 (94.44%)	Flagged items	1	Actions	3
Organization Name Voyager Chemical Industries					
Creator			E	arl Bogisich II	
Date of Analysis 01.07.2024 00:00 PST				024 00:00 PST	

Flagged items & Actions

1 flagged, 3 actions

Flagged items

1 flagged, 1 action

Process Hazard Analysis / Maintenance Schedule

Inspection Results (Issues Found)

Yes

To do | Priority: High | Due: 23.08.2024 18:03 PST | Created by: SafetyCulture Staff

Incident report

The maintenance team will submit a report on this

Other actions 2 actions

Process Hazard Analysis / Safety Systems

Recent Safety System Findings and Recommendations

We will need to acquire full-face respirators, disposable coveralls with hoods, and gloves for toxic release. We will coordinate with the procurement

To do | Priority: Medium | Due: 23.08.2024 17:13 PST | Created by: SafetyCulture Staff

quotation of prices

Get quotation of prices for these safety devices

Process Hazard Analysis / Maintenance Schedule

What are the issues?

Some pipes were found to have dents. They're now being replaced.

Photo 1

To do | Assignee: SafetyCulture Staff | Priority: High | Due: 23.08.2024 18:01 PST | Created by: SafetyCulture Staff

Pipes to be replaced

Maintenance team will create a report on this.

Process Overview

Process Name

asbestos insulation removal

Process Description

Asbestos insulation removal in the workplace begins with sealing off the work area to contain any airborne fibers, ensuring the safety of both workers and others nearby. Workers then wet the asbestos-containing materials to reduce the risk of fibers becoming airborne during removal. Using hand tools, workers carefully extract the insulation while wearing full protective gear, including respirators, to prevent inhalation of hazardous fibers. The removed asbestos is immediately sealed in specialized containers, labeled for hazardous waste, and handled according to strict regulations. Finally, the area is thoroughly cleaned with wet methods and vacuum systems designed for asbestos, with air monitoring conducted to confirm the absence of lingering fibers before reopening the site.

Process Hazard Analysis

1 flagged, 3 actions, 17 / 18 (94.44%)

Hazard Identification

5 / 5 (100%)

Potential Hazards (Check all that apply)

Chemical Exposure	Toxic Release
-------------------	---------------

Other Potential Hazards Not Mentioned Above

NA

Severity Rating (1: Low, 5: High)

From 1 to 5

Description of Identified Hazards

Chemical Exposure: Workers involved in asbestos insulation removal may be exposed to hazardous chemicals used in the process, such as solvents or wetting agents, which can cause skin irritation, respiratory issues, or other health problems if not handled with proper protective equipment.

Toxic Release: The disturbance of asbestos insulation during removal can lead to the release of toxic asbestos fibers into the air, posing a significant risk of inhalation, which can result in severe respiratory diseases like asbestosis, lung cancer, and mesothelioma over time

Existing Controls

Chemical Exposure: To control chemical exposure during asbestos insulation removal, workers are required to use personal protective equipment (PPE) such as gloves, goggles, and respirators, and follow safety guidelines for handling and applying chemical agents. Additionally, ventilation systems and fume extraction equipment are often used to minimize the concentration of hazardous chemicals in the air.

Toxic Release: To prevent the toxic release of asbestos fibers, the work area is isolated using containment barriers and negative air pressure systems, ensuring that airborne fibers do not spread. Wetting the asbestos materials before removal also helps to reduce fiber release, and workers are required to wear respirators and disposable protective clothing to minimize inhalation and contamination risks.

Safety Systems 1 action, 1 / 1 (100%)

Safety Devices Present

Emergency Shutdown Systems Gas Detectors Ventilation Systems	Emergency Shutdown Systems	Gas Detectors	Ventilation Systems
--	----------------------------	---------------	---------------------

Other Safety Devices Needed

Other necessary safety devices include full-face respirators, disposable coveralls with hoods, and gloves for toxic release

Effectiveness of Safety Systems

We will need to further assess the effectiveness of the present and other required safety devices.

Maintenance Frequency of Safety Systems	Monthly

Recent Safety System Inspection

03.06.2024 00:00 PST

Recent Safety System Findings and Recommendations

We will need to acquire full-face respirators, disposable coveralls with hoods, and gloves for toxic release. We will coordinate with the procurement

To do | Priority: Medium | Due: 23.08.2024 17:13 PST | Created by: SafetyCulture Staff

quotation of prices

Get quotation of prices for these safety devices

Standard Operating Procedures (SOPs)

1 / 1 (100%)

Reviewed SOPs

Asbestos Insulation Removal SOP

Are procedures adequate?	Yes
Human Factors	2 / 2 (100%)
Operator Training	
Last Training Date	06.05.2024 00:00 PST
Certification Validity Date	06.11.2024 00:00 PST
Workload and Fatigue Considerations	2 / 2 (100%)
Operator Shift Duration (Hours)	8
Break Schedules	Yes
Fatigue Management in Place?	Yes
Human Error Potential	

Describe potential errors

Errors such as improper sealing of the containment area, inadequate wetting of asbestos materials, or failure to wear appropriate protective gear can result in the release of toxic asbestos fibers into the air.

Impact of Errors

These errors can lead to serious health impacts for workers and others nearby, including exposure to deadly respiratory diseases like mesothelioma and lung cancer. Additionally, contamination of the surrounding environment may occur, leading to costly cleanup efforts and potential legal liabilities.

Maintenance Schedule 1 flagged, 2 actions, 2 / 2 (100%)

Last Maintenance Date 28.06.2024

Next Maintenance Due 26.07.2024

Inspection Frequency

Monthly

Inspection Results (Issues Found)

Yes

To do | Priority: High | Due: 23.08.2024 18:03 PST | Created by: SafetyCulture Staff

Incident report

The maintenance team will submit a report on this

What are the issues?

Some pipes were found to have dents. They're now being replaced.

Photo 1

To do | Assignee: SafetyCulture Staff | Priority: High | Due: 23.08.2024 18:01 PST | Created by: SafetyCulture Staff

Pipes to be replaced

Maintenance team will create a report on this.

Emergency Response

1 / 1 (100%)

Emergency Plan Availability

Yes

Location of the Plan

It's stored in the company's digital drive. Each office also has its own hard copy of the Emergency Plan. For reference of the document, please see attached.

Emergency Plan.pdf

Other Emergency Equipment Required

Emergency Equipment Availability

We need to replenish the first aid kits.

Last Emergency Drill Conducted

03.06.2024

Emergency Showers

Drill Type

low-speed, HEPA-filtered drill

Drill Observation

Workers observed safety protocols, such as maintaining the correct drilling speed, keeping the drill properly positioned to minimize disturbance, and ensuring the HEPA filter is functioning correctly.

Environmental Impact 2 / 2 (100%)

Potential Environmental Hazards

Air Emissions

Other Potential Environmental Hazards Not Mentioned Above

NA

Mitigation Measures in Place

Observance of environmental compliance in terms of air quality maintenance.

Environmental Compliance Status	In Compliance
Change Management (If Applicable)	2 / 3 (66.67%)
Process Changes Reviewed	N/A
Impact of Change Assessed	N/A
Potential Hazards Introduced	NA
Documentation of Changes	
Documentation and Reporting	1 / 1 (100%)
Records Maintained	Near-Miss Reports

We need to keep detailed documentation of other forms of reports and records.

Assigned Reporting Person

All safety officers are required to escalate all issues found related to asbestos insulation removal.

Continuous Improvement Measures

Regular refresher trainings will be implemented. We will discuss the spacing of the frequency in our safety meeting this Friday, July 5.

Sign-off

Process Hazard Analysis Approval and Sign-off

Candice Fisher

Candice Fisher 16.08.2024 17:50 PST

Designation

Safety Director

Media summary

Photo 1

File summary

Emergency Plan.pdf